Weighted DL-Lite in a possibility theory setting

Zied Bouraoui

bouraoui@cril.fr
Centre de Recherche en Informatique de Lens, CRIL
Weighted DL-Lite

- Representation
- Fusion
- Inconsistency
- Revision

Context
DL-Lite in few words

- Tradeoff between expressive power and complexity of reasoning
- Captures basic features of both ontology languages and conceptual modeling formalisms
- Provides the foundations of OWL2-QL especially dedicated to applications that use huge volumes of data
Outline

1. Possibilistic DL-Lite: Representation

2. Possibilistic DL-Lite: Inconsistency management

3. Possibilistic DL-Lite: Revision and Fusion
Outline

1. Possibilistic DL-Lite: Representation
2. Possibilistic DL-Lite: Inconsistency management
3. Possibilistic DL-Lite: Revision and Fusion
Starting point

For representing a domain of interest, we use:

- \(a \): an individual or a constant.
- \(A \): an atomic concept to denote a sets of individuals.
- \(P \): an atomic role to denote binary relation among individuals.
- \(\alpha \in]0, 1] \): to denote the uncertainty degree of an axiom.
- \(\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle \): to denote a knowledge base where
 - \(\mathcal{T} \) is a TBox
 - \(\mathcal{A} \) is an ABox
π-DL-Lite knowledge base: the ABox

An ABox consists of a set of:

- membership assertions on atomic concepts
 \[\langle A(a), \alpha \rangle \]

- membership assertions on atomic roles
 \[\langle P(a, b), \alpha \rangle \]
A description language is characterized by a set of constructs used for building complex concepts and roles form atomic ones.

- “−” to denote the inverse of role: if $P = (a, b)$ then $P^- = (b, a)$.
- “¬” to denote the negation of a concept or role.
- “∃” to denote the first element of a role or an inverse of role.
An DL-$Lite_R$ TBox consists of a set of:

- Concept inclusion assertion with $B \rightarrow A \mid \exists P \mid \exists P^-$:

 $$\langle B_1 \sqsubseteq B_2, \alpha \rangle \quad \langle B_1 \sqsubseteq \neg B_2, \alpha \rangle$$

- Roles inclusion assertions with $R \rightarrow P \mid P^-$:

 $$\langle R_1 \sqsubseteq R_2, \alpha \rangle \quad \langle R_1 \sqsubseteq \neg R_2, \alpha \rangle$$
The semantics is given in terms of **interpretations**.

An interpretation $I = (\Delta, .^I)$ consists of

- a non-empty domain (set) Δ
- an interpretation function I, which assigns:
 - to each individual a an element $a^I \in \Delta^I$,
 - to each atomic concept A a subset $A^I \subseteq \Delta^I$
 - to each atomic role P a subset $P^I \subseteq \Delta^I \times \Delta^I$

The I is extended to complex concepts and roles according to their structure.

- $(\neg A)^I = \Delta^I \setminus A^I$
- $(P^-)^I = \{(y, x) \in \Delta^I \times \Delta^I : (x, y) \in P^I\}$
- $(\exists R)^I = \{x \in \Delta^I : \exists y \in \Delta^I. (x, y) \in R^I\}$
The semantics is given in terms of *interpretations*.

An interpretation $I = (\Delta, .^I)$ consists of

- a non-empty domain (set) Δ
- an interpretation function I, which assigns:
 - to each individual a an element $a^I \in \Delta^I$,
 - to each atomic concept A a subset $A^I \subseteq \Delta^I$,
 - to each atomic role P a subset $P^I \subseteq \Delta^I \times \Delta^I$

The I is extended to complex concepts and roles according to their structure.

- $(\neg A)^I = \Delta^I \setminus A^I$
- $(P^-)^I = \{(y, x) \in \Delta^I \times \Delta^I : (x, y) \in P^I\}$
- $(\exists R)^I = \{x \in \Delta^I : \exists y \in \Delta^I. (x, y) \in R^I\}$
The semantics is given by specifying whether I satisfies or not assertions:

TBox
- $I \models B \sqsubseteq C$ iff $B^I \subseteq C^I$
- $I \models R \sqsubseteq E$ iff $R^I \subseteq E^I$

ABox
- $I \models A(a_i)$ iff $a_i^I \in A^I$
- $I \models P(a_i, a_j)$ iff $(a_i^I, a_j^I) \in P^I$

Model of a DL knowledge base

An interpretation I is a model of $\mathcal{K} = \{\mathcal{T}, \mathcal{A}\}$, written $I \models \mathcal{K}$ if it satisfies every assertion in \mathcal{T} and \mathcal{A}.
A possibility distribution $\pi : \Omega \rightarrow [0, 1]$ where $\Omega = \{ I = (\Delta, .') \}$

- $\pi (I) \in [0, 1]$ represents the consistency of I relative to the available knowledge.

Let $\langle \phi, \alpha \rangle \in K$ a possibilistic axiom:
- if $I \models \phi$ then $\pi_K (I) = 1$.
- if $I \not\models \phi$ then $\pi_K (I) = 1 - \alpha$.

For every $I \in \Omega$, π_K associated to K a π-DL-Lite KB

$$\pi_K (I) = \begin{cases} 1 & \text{if } \forall \langle \phi_i, \alpha_i \rangle \in K, I \models \phi_i \\ 1 - \max \{ \alpha_i : (\phi_i, \alpha_i) \in K \mid I \not\models \phi_i \} & \text{otherwise} \end{cases}$$
Ranking interpretations

A possibility distribution $\pi : \Omega \rightarrow [0, 1]$ where $\Omega = \{ I = (\Delta, .') \}$

- $\pi(I) \in [0, 1]$ represents the consistency of I relative to the available knowledge.

Let $\langle \phi, \alpha \rangle \in \mathcal{K}$ a possibilistic axiom:

- if $I \models \phi$ then $\pi_{\mathcal{K}}(I) = 1$.
- if $I \not\models \phi$ then $\pi_{\mathcal{K}}(I) = 1 - \alpha$.

For every $I \in \Omega$, $\pi_{\mathcal{K}}$ associated to \mathcal{K} a π-DL-Lite KB:

$$
\pi_{\mathcal{K}}(I) = \begin{cases}
1 & \text{if } \forall \langle \phi_i, \alpha_i \rangle \in \mathcal{K}, I \models \phi_i \\
1 - \max \{ \alpha_i : (\phi_i, \alpha_i) \in \mathcal{K} | I \not\models \phi_i \} & \text{otherwise}
\end{cases}
$$
A possibility distribution \(\pi : \Omega \rightarrow [0, 1] \) where \(\Omega = \{ I = (\Delta, \cdot) \} \)
- \(\pi (I) \in [0, 1] \) represents the consistency of \(I \) relative to the available knowledge.

Let \(\langle \phi, \alpha \rangle \in K \) a possibilistic axiom:
- if \(I \models \phi \) then \(\pi_K (I) = 1 \).
- if \(I \not\models \phi \) then \(\pi_K (I) = 1 - \alpha \).

For every \(I \in \Omega \), \(\pi_K \) associated to \(K \) a \(\pi\)-DL-Lite KB
\[
\pi_K (I) = \begin{cases}
 1 & \text{if } \forall \langle \phi_i, \alpha_i \rangle \in K, I \models \phi_i \\
 1 - \max \{ \alpha_i : (\phi_i, \alpha_i) \in K| I \not\models \phi_i \} & \text{otherwise}
\end{cases}
\]
Outline

1. Possibilistic DL-Lite: Representation

2. Possibilistic DL-Lite: Inconsistency management

3. Possibilistic DL-Lite: Revision and Fusion
Incoherence vs Inconsistency

In DLs, there are two similar concepts to reflect the presence of conflicts in KBs.

Incoherence
- A DL-Lite TBox \mathcal{T} is said to be incoherent if there exist a concepts C such that for every interpretation I which is a model of \mathcal{T}, we have $C^I = \emptyset$.
- $\mathcal{T} = \{B_1 \sqsubseteq B_2, B_1 \sqsubseteq \neg B_2\}$, all models I of \mathcal{T} are such that $B_1^I = \emptyset$.

Inconsistency: a stronger concept of incoherence
- A KB $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$ is said to be inconsistent if it does not admit a model.
- An inconsistency is always defined with respect to ABox, since a TBox may be incoherent but never inconsistent.
Incoherence vs Inconsistency

In DLs, there are two similar concepts to reflect the presence of conflicts in KBs

Incoherence

- A *DL-Lite* TBox \mathcal{T} is said to be incoherent if there exist a concepts C such that for every interpretation I which is a model of \mathcal{T}, we have $C^I = \emptyset$.
- $\mathcal{T} = \{ B_1 \sqsubseteq B_2, B_1 \sqsubseteq \neg B_2 \}$, all models I of \mathcal{T} are such that $B_1^I = \emptyset$

Inconsistency: a stronger concept of incoherence

- A KB $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$ is said to be inconsistent if it does not admit a model
- An inconsistency is always defines with respect to ABox, since a TBox may be incoherent but never inconsistent
Positive inclusions axioms vs Negative inclusions axioms

A possibilistic TBox $\mathcal{T} = \{PI, NI\}$ can be viewed as composed of:

- **positive inclusions (PIs) of the form:**
 - $\langle B_1 \sqsubseteq B_2, \alpha \rangle$
 - $\langle R_1 \sqsubseteq R_2, \alpha \rangle$

- **negative inclusions (NIs) of the form:**
 - $\langle B_1 \sqsubseteq \neg B_2, \alpha \rangle$
 - $\langle R_1 \sqsubseteq \neg R_2, \alpha \rangle$
Let $\langle B_1 \sqsubseteq B_2, \alpha_1 \rangle$ be a weighted positive inclusion axiom:

- $\langle B_1 (a), \alpha_2 \rangle$
- $\langle B_2 (a), \alpha_3 \rangle$

A KB $\mathcal{K} = \langle T, A \rangle$ with only positive inclusions axioms in its TBox is always satisfiable.
Negative inclusions axioms

Let $\langle B_1 \sqsubseteq \neg B_2, \alpha_1 \rangle$ be a weighted negative inclusion axiom

- $\langle B_1 (a), \alpha_2 \rangle$

- $\langle B_2 (a), \alpha_3 \rangle$

A KB $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$ with negative inclusions axioms may cause Inconsistency

A conflict necessary implies:

- One NI axiom

- One or two membership assertion
Inconsistency check?

TBox

Negated closure

Search for all contradictions

ABox

Generation of conflicts (Revision)

Compute inconsistency degree (possibility theory frameworks)
Negated closure in π-DL-Lite

At the beginning π-$neg (T)$ is set to an empty set.

- **Rule 1:** Let $T = \{IP, IN\}$ then $IN \subseteq \pi - neg (T)$.

- **Rule 2:** Let $T = \{IP, IN\}$ then $\langle funct R, \alpha \rangle \subseteq \pi - neg (T)$.

- **Rule 3:** If $\langle B_1 \sqsubseteq B_2, \alpha_1 \rangle \in T$:
 - if $\langle B_2 \sqsubseteq \neg B_3, \alpha_2 \rangle \in \pi - neg (T)$ or $\langle B_3 \sqsubseteq \neg B_2, \alpha_2 \rangle \in \pi - neg (T)$
 - then add $\langle B_1 \sqsubseteq \neg B_3, min(\alpha_1, \alpha_2) \rangle$ to $\pi - neg (T)$

-
Outline

1. Possibilistic DL-Lite: Representation
2. Possibilistic DL-Lite: Inconsistency management
3. Possibilistic DL-Lite: Revision and Fusion
Revision Problem

Initial KB + New information = Inconsistent KB
The input

New information (The input)

- Membership assertion
- PI axiom
- NI axiom
How modify K to become consistent with N?

In order to restore consistency of $K \cup N$:

- we remove a membership assertion from original ABox.

- we remove a PIs or a NIs axioms from original TBox.

- we remove axioms from both ABox or TBox.
Revision operation (1/2)

Case 1

The input:

Membership assertion

K={T,A}

Revision is polynomial

Case 2

The input:

P1 axiom

K={PIs,A}

No conflict
Case 3

The input:

PL axiom

NI axiom

K=\{\{PLs,NIls\},A\}

Generation of conflicts is polynomial

Revision ????
Generation of removed collections

A NI axiom

\[A \sqsubseteq \neg B \]

Conflicts

\{A(a), B(a)\} \rightarrow \{A(b), B(b)\} \rightarrow \{A(c), B(c)\} \rightarrow \ldots

Collections

\{A(a), B(b), A(c)\} \rightarrow \{A(a), A(b), B(c)\} \rightarrow \ldots
Generation of removed sets

\[A \subseteq \neg B \]

\[C \subseteq \neg D \]

Removed collections:
- \{A(a), B(b), A(c)\}
- \{A(a), A(b), B(c)\}
- \{C(e), D(f)\}
- \{C(e), D(e)\}

Removed sets:
- \{A(a), B(b), A(c), C(e), D(f)\}
- \{A(a), A(b), B(c), C(e), D(f)\}
- \{A(a), B(b), A(c), C(e), D(f)\}
- \{C(e), D(e)\}
- \{C(e), D(e)\}
- \{C(e), D(e)\}