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Abstract

DL-Lite is a powerful and tractable family of description logics specif-
ically tailored for applications that use huge volumes of data. In many
real world applications, data are often provided by several and potentially
conflicting sources of information having different levels of priority. Pos-
sibility theory offers a very natural framework to deal with ordinal and
qualitative uncertain beliefs or prioritized preferences. Thus, to encode
prioritized assertional facts, a possibility DL-Lite logic is more suited.

We propose in this paper a min-based assertional merging operator
for possibilistic DL-Lite knowledge bases. We investigate in particular the
situation where the sources share the same terminological base. We present
a syntactic method based on conflict resolution which has a meaningful
semantic counterpart when merging possibility distributions. We finally
provide an analysis in the light of a new set of postulates dedicated to
uncertain DL-Lite merging.

1 Introduction

Description Logics (DLs) provide a powerful formalism for representing and rea-
soning on ontologies [2]. A DL knowledge base is formed by a terminological
base, called TBox, and an assertional base, called ABox. The TBox contains
intentional (or generic) knowledge of the application domain whereas the Abox
stores data (or individuals or constants) that instantiate terminological knowl-
edge. In the last years, there has been an increasingly interest in Ontology-based
Data Access (OBDA), in which a TBox is used to reformulate posed queries to
offer a better access to the set of data encoded in the ABox [25]. Recently, a lot
of attention was given to DL-Lite, a family of lightweight DLs specifically fitted
towards OBDA [13]. DL-Lite is especially dedicated for applications that use
huge volumes of data, in which query answering is the most important reasoning
task. DL-Lite offers a very low computational complexity for the reasoning pro-
cess. In particular query answering is in LogSpace for spatial complexity (w.r.t.
the overall size of the ABox). Moreover knowledge base consistency test and all
DLs standard reasoning services are polynomial for combined complexity (w.r.t.
the overall size of the knowledge base) [1].

In many real OBDA applications, assertional facts are often provided by sev-
eral and potentially conflicting sources of information having different reliability

2



levels. Moreover, a given source may provide its set of data with different con-
fidence levels. Possibilistic theory (e.g. [17]) offers a very natural framework
to deal with ordinal and qualitative uncertain beliefs or prioritized preferences.
This framework allows to deal with non-probabilistic information and is particu-
larly appropriate when the uncertainty (or priority) scale only reflects a priority
relation between different pieces of information. An important problem that
arises in such a situation is how to aggregate these different sets of data. This
problem is closely related to the belief merging problem (e.g. [12, 22]), largely
studied when knowledge bases are encoded in propositional logic framework.
Belief merging focuses on aggregating pieces of information issued from distinct,
and possibly conflicting or inconsistent, sources of information. This process
produces a global point of view over considered problems by taking advantage
of pieces of information provided by each source. Within the possibility theory
framework, several merging operators (e.g. [15, 8, 10]) have been proposed for
merging pieces of information. These merging operators lead to combine multiple
possibility distributions, that encode information provided by different sources,
to obtain a unique possibility distribution which represents the global point of
view from available information. Syntactic counterparts have been introduced
for most of them.

Recently, a possibilistic extension of DL-Lite, denoted DL-Liteπ, was pro-
posed in [3]. In particular, DL-Liteπ guarantees a computational complexity
that is identical to the one of standard DL-Lite. In this paper, we use DL-Liteπ

to encode and reason with available knowledge. Merging possibilistic DLs knowl-
edge bases has been recognized as an important issue [26]. Recently, in [5], a
min-based merging operator dedicated to possibilistic DL-Lite knowledge bases
was proposed as an adaptation of the well-known idempotent conjunctive op-
erator lastly introduced within possibilistic logics setting. This latter, suitable
when sources are assumed to be dependent, is very cautious in the sense where
it leads to ignore too many axioms in order to ensure the consistency of the
resulting knowledge base.

In this paper, we go one step further in the definition of merging operators
for DL-Liteπ knowledge bases by investigating the aggregation of assertional
bases (ABox) which are linked to the same terminological base. The rest of
this paper is organized as follows. Section 2 gives brief preliminaries on DL-
Liteπ as extension of DL-Lite within possibility theory setting. In Section 3,
we first introduce a syntactic merging operator, namely a min-based assertional
operator based on conflict resolution. We show that such a merging operator
gives a more satisfactory result compared with the one proposed in [5]. We then
study, in Section 4, merging at a semantic level, and we show that our operator
has a natural counterpart when combining several possibility distributions. We
also rephrase within DL-Lite framework the set of postulates proposed in [23]
to characterize the logical behavior of belief bases merging operators. Thus, we
provide a postulates-based logical analysis of the min-based assertional operator
in the light of this new set of postulates dedicated to the uncertain DL-Lite
framework. Section 5 concludes the paper. Two important results of this study
are: (i) our merging approach based on conflict resolution can be easily extended
to define others merging operators and (ii) the computational complexity of min-
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based assertional fusion outcome is polynomial.

2 Possibilistic DL-Lite

In this section, we recall main notions of possibilistic DL-Lite framework [3],
denoted by DL-Liteπ, as an extension of DL-Lite within a possibility theory set-
ting. DL-Liteπ provides an excellent mechanism to deal with uncertainty and to
ensure reasoning under inconsistency while keeping a computational complexity
identical to the one used in standard DL-Lite.

2.1 A brief refresh on DL-Lite

For the sake of simplicity, we only present DL-Litecore the core fragment of all
the DL-Lite family [13]. However, results of this paper are valid for DL-LiteR
and DL-LiteF , the two main fragments of the DL-Lite family.

A DL-Lite knowledge base K=〈T ,A〉 is composed of a set of atomic concepts
(i.e. unary predicates), a set of atomic roles (i.e. binary predicates) and a set
of individuals (i.e. constants). Complex concepts and roles are built as follows:

B −→ A|∃R R −→ P |P− C −→ B|¬B

where A (resp. P) is an atomic concept (resp. role). B (resp. C) is called basic
(resp. complex) concept and role R is called basic role. The TBox T includes a
finite set of inclusion assertions of the form B v C where B and C are concepts.
The ABox A contains a finite set of assertions on atomic concepts and roles of
the form A(a) and P (a, b) where a and b are two individuals.

The semantics of DL-Lite is given by an interpretation I=(∆, .I) which con-
sists of an infinite and non-empty domain, denoted ∆, and an interpretation
function, denoted .I . The function .I associates with each individual a an el-
ement aI of ∆I , to each concept C a subset CI of ∆I and to each role R
a binary relation RI over ∆I . Furthermore, the interpretation function .I is
extended in a straightforward way for complex concepts and roles as follows:
(¬B)I=∆I \ BI , (P−)I={(y, x) ∈ ∆I × ∆I |(x, y) ∈ P I} and (∃R)I={x ∈
∆I |∃y ∈ ∆I such that (x, y) ∈ RI}.

An interpretation I is said to be a model of an inclusion assertion B v C,
denoted by I � B v C, iff BI ⊆ CI . Similarly, we say that an interpretation I
is a model of a membership assertion A(a) (resp. P (a, b)), denoted by I � A(a)
(resp. I � P (a, b)), iff aI ∈ AI (resp. (aI , bI) ∈ P I). I is a model of K=〈T ,A〉,
denoted by I � K, iff I � T and I � A where I � T (resp. I � A) means that
I is a model of all axioms in T (resp. A). A knowledge base K is said to be
consistent if it admits at least one model, otherwise K is said to be inconsistent.
A DL-Lite TBox T is said to be incoherent if there exists at least a concept C
such that for each interpretation I which is a model of T , we have CI=∅. Note
that within a DL-Lite setting, the inconsistency problem is always defined with
respect to some ABox since a TBox may be incoherent but never inconsistent.
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2.2 Possibility distribution over DL-Lite interpretation

Let Ω be a universe of discourse composed by a set of DL-Lite interpretations
(I=(∆, .I) ∈ Ω). The semantic counterpart of a DL-Liteπ knowledge base is
given by a possibility distribution, denoted by π, which is a mapping from Ω
to the unit interval [0, 1] that assigns to each interpretation I ∈ Ω a possibility
degree π(I) ∈ [0, 1] that represents its compatibility or consistency with respect
to the set of available knowledge. When π(I)=0, we say that I is impossible
and it is fully inconsistent with the set of available knowledge, whereas when
π(I)=1, we say that I is totally possible and it is fully consistent with the
set of available knowledge. For two interpretations I and I ′, when π(I) >
π(I ′) we say that I is more consistent or more preferred than I ′ w.r.t available
knowledge. Lastly, π is said to be normalized if there exists at least one totally
possible interpretation, namely ∃I ∈ Ω, π(I)=1, otherwise, we say that π is sub-
normalized. The concept of sub-normalization reflects the presence of conflicts
in the set of available information.

Given a possibility distribution π defined on a set of interpretations Ω,
one can define two measures on a DL-Lite axiom ϕ: A possibility measure
Π(ϕ)=max

I∈Ω
{π(I) : I � ϕ} that evaluates to what extent an axiom ϕ is com-

patible with the available knowledge encoded by π and a necessity measure
N(ϕ)=1 − max

I∈Ω
{π(I) : I 2 ϕ} that evaluates to what extent ϕ is certainty

entailed from available knowledge encoded by π.

2.3 DL-Liteπ knowledge base

Let L be a DL-Lite description language, a DL-Liteπ knowledge base is a set of
possibilistic axioms of the form (ϕ, α) where ϕ is an axiom expressed in L and
α ∈ ] 0, 1] is the degree of certainty of ϕ. Namely, a DL-Liteπ knowledge base
K is such that K={(ϕi, αi) : i = 1, ..., n}. Only somewhat certain information
are explicitly represented in a DL-Liteπ knowledge base. Namely, axioms with
a null degree (α = 0) are not explicitly represented in the knowledge base. The
weighted axiom (ϕ, α) means that the certainty degree of ϕ is at least equal to
α (namely N(ϕ) ≥ α). A DL-Liteπ knowledge base K will also be represented
by a couple K=〈T ,A〉 where both elements in T and A may be uncertain. It
is important to note that, if we consider all αi = 1 then we found a classical
DL-Lite knowledge base: K∗={ϕi : (ϕi, αi) ∈ K}.

Given K=〈T ,A〉 a DL-Liteπ knowledge base, we define the α-cut of K (resp.
T and A), denoted by K≥α (resp. T≥α and A≥α), the subbase of K (resp. T
and A) composed of axioms having weights at least greater than α. We say
that K is consistent if the standard knowledge base obtained from K by ignor-
ing the weights associated with axioms is consistent. In case of inconsistency,
we attach to K an inconsistency degree. The inconsistency degree of a DL-
Liteπ knowledge base K, denoted by Inc(K), is syntactically defined as follow:
Inc(K)=max{α:K≥α is inconsistent}.

Given aDL-Liteπ knowledge baseK, one can associate toK a joint possibility
distribution, denoted by πK, defined over the set of all interpretations I=(∆, .I)
by associating to each interpretation its level of consistency with the set of
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available knowledge, that is, with K. Namely:

Definition 1. The possibility distribution induced from a DL-Liteπ is defined

as follows: ∀I ∈ Ω : πK(I) =

{
1 if ∀ (ϕi, αi) ∈ K, I � ϕi
1−max{αi : (ϕi, αi) ∈ KI 2 ϕi} otherwise

A DL-Liteπ knowledge base K is said to be consistent if its joint possibil-
ity distribution πK is normalized. If not, K is said to be inconsistent and its
inconsistency degree is defined semantically as follow: Inc(K)=1−max

I∈Ω
{πK(I)}.

It was shown in [3] that computing the inconsistency degree of a DL-Liteπ

knowledge base comes from the extension of the algorithm presented in [13] by
modifying it to query for individuals with a given certainty degree.

Example 1. Let K=〈T ,A〉 be a DL-Liteπ knowledge base where T ={(AvB, 1),
(Bv¬C, .9)} and A={(A(a), .6), (C(b).5)}. The possibility distribution πK as-
sociated to K is computed using Definition 1 as follows where ∆={a, b}:

I .I πK
I1 A={a},B={},C={b} 0
I2 A={a},B={a},C={b} 1
I3 A={},B={},C={a,b} .4
I4 A={a,b},B={a,b},C={} .5

Table 1: Example of a possibility distribution induced from a DL-Liteπ KBOne can observe that πK(I2)=1 meaning that πK is normalized, and thus, K
is consistent.

3 Syntactic merging of DL-Liteπ assertional bases

Let us consider A1,...,An a set of assertional bases (ABox) where each Ai rep-
resents assertional facts provided by a single source of information. We assume
that we have a well-formed and coherent terminological base (TBox) T where
each Ai is consistent with T . This is not a restriction. This particular case
can be handled outside the fusion problem considered in this paper. Note that
this choice is motivated by the fact that such situation is widely occurring in
Ontology-Based Data Access. Throughout the rest of this paper, we cast avail-
able information within the DL-Liteπ framework. For the sake of simplicity, we
omit the weights notation attached to the TBox axioms considered as the ones
having the highest certainty level, namely, an axiom in T is of the form (ϕ,1).
We only represent explicitly weights attached to Ai assertions. An assertion f
in Ai is of the form f=(ϕ, α) where α ∈ [0, 1]. Note that copies of the same
assertions ϕ are allowed in several Ai and they are considered as different in the
sense of priorities or certainty and not in terms of interpretations since we use
the unique name assumption. In this section, we study syntactic merging of n
assertional bases A1,...,An that are linked to the same TBox T .

Let us consider S1, ..., Sn be the signatures of A1,...,An and T . Recall that
a signature S of a knowledge base K is the set of concept names and role names
used in K. We assume that all Ai’s and T share the same signature. Namely if
a concept name (resp. role name) A appears in S1 and S2 then A is assumed
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to be the same. We look to identify a syntactical merging operator on the Ai’s
w.r.t a TBox T which will be semantically meaningful. Merging at semantic
level will be presented in Section 4.

3.1 Merging using the classical min-based operator

In this section, we perform merging of A1,...,An a set of ABox w.r.t a TBox T
using the classical min-based merging operator proposed in [5] to aggregate DL-
Liteπ knowledge bases. This operator is a direct extension of the well-known
idempotent conjunctive operator (e.g. [8]) within possibilistic DL-Lite setting.
It is recommended when distinct sources that provide information are assumed
to be dependent.

Let T be a TBox and A1, ...An be a set of ABox provided by n distinct
sources of information to be linked to T . The min-based merging operator,
denoted by ⊕ considers the union of all ABox. Namely:

A⊕=A1 ∪ A2 ∪ . . . ∪ An.

The merging of two consistent knowledge bases is not guaranteed to be con-
sistent. Namely, the resulting knowledge base K⊕=〈T ,A⊕〉 may be inconsistent.
To restore the consistency of the resulting knowledge base a normalization step
is required. The following definition gives the formal logical representation of
the normalized knowledge base.

Definition 2. Let T be a TBox and A⊕ be the aggregation of A1, ...An, n ABox
using classical min-based operator. Let x=Inc(〈T ,A⊕〉). Then, the normalized
knowledge base, denoted, KN⊕ is such that:

KN⊕=〈T , {(ϕ, α) : (ϕ, α) ∈ A⊕ andα > x}〉

Example 2 (continued). Let us continue with the TBox T ={A v B, B v
¬C} presented in Example 1 while assuming that the certainty degree of each
axioms is set to 1. Let us consider the following set of ABox to be linked
to T : A1={(A(a), .6), (C(b), .5)}, A2={(C(a), .4), (B(b), .8), (A(b), .7)} and
A3={(A(b), .2), (A(c), .5), (B(c), .4)}. We have A⊕={(A(a),.6), (C(b),.5),
(C(a), .4), (B(b),.8), (A(b),.7), (A(b),.2), (A(c), .5), (B(c),.4)} where Inc(〈T ,A⊕〉)=.5.
Then KN⊕=T ∪{(A(a),.6),(B(b), .8), (A(b),.7)}.

According to Definition 2, merging operation does not modify the certainty
degrees of the DL-Liteπ knowledge base. It just permits to ignore the presence
of contradictions (or conflicts) and maintain all the assertions of A⊕ whose
certainty degrees are higher than the inconsistency degree of 〈T ,A⊕〉. It is
clear that the formal expression of the normalized DL-Liteπ knowledge base
K⊕ given in Definition 2 provides a consistent knowledge base. However, this
result is not very satisfactory, since many assertions in A1,...,An, which are not
involved in any conflict are thrown out. As pointed in [7], restoring consistency
in possibilistic logics suffers generally from an important drawback problem in
the sense that some axiom from A⊕-A⊕>Inc(T ∪A⊕)

that are not involved in any

conflict are inhibited as we can see in the above example.

7



Example 3 (continued). One can see that the assertions (A(c), .5) and (B(c), .4)
are not involved in any conflict, but they are nor integrated in the merging result.

In the next section, we investigate a new approach to merge assertional base
based on conflict detection. This approach allows recovering of all elements,
non involved in any conflict and inhibited when restoring consistency using the
classical min-based merging operator.

3.2 Min-based assertional merging using conflict resolu-
tion

Let K=〈T ,A〉 be a DL-Liteπ knowledge base. In [3] it was shown that comput-
ing the inconsistency degree ofK comes down to compute the one of 〈π − neg(T ),A〉
where π-neg(T ) is the negated closure of T . The negated closure will contain
all the possibilistic negated axioms of the form (B1v¬B2,α) that can be de-
rived from T . The set π-neg(T ) is obtained by applying a set of three rules
that extend the ones defined in standard DL-Lite. For instance after adding all
NI of T to π-neg(T ) a rule said that If (B1vB2,α1) ∈ T and (B2v¬B3, α2)
in π-neg(T ) then add (B1v¬B3,min(α1,α2)) to π-neg(T ). See [3] for a more
detailed description of DL-Liteπ. Indeed, computing inconsistency degree of
K consists on calculating the maximal weight attached to minimal inconsistent
subsets involved in inconsistency. More formally, a minimal inconsistent set is
defined as follows.

Definition 3. A minimal inconsistent subsetM⊆K is a subset of 〈π − neg(T ) ,
A〉 of the form: {(B1v¬B2,α1),(B1(a),α2),(B2(a),α3)} where (B1v¬B2,α1)∈
π-neg(T ), (B1(a),α2)∈A and (B2(a),α3)∈A.

Clearly, a minimal inconsistent subset is a subset of information involving
three elements: an axiom of π-neg(T ) and two assertions of A up to a particular
case where B1=B2 belongs to π-neg(T ). This corresponds to the situation of
insatisfiable concept. Namely, no way to find an individual that belongs to B. In
this case B1=B2 is minimal inconsistent subset composed only of two elements:
an axiom of π-neg(T ) and an assertions of A. Within a DL-Lite setting, the
inconsistency problem is always defined with respect to some ABox, since a TBox
may be incoherent but never inconsistent. Recall that in this paper, we assume
that T is coherent. So, from the definition of minimal inconsistent subset, we
define the notion of conflict as a minimal inconsistent subset of assertions that
contradict a negative inclusion axiom. More formally:

Definition 4. Let K=〈T ,A〉 be an inconsistent DL-Liteπ knowledge base where
axioms in T are set to 1. A sub-base C⊆A is said to be an assertional conflict
set of K iff

• Inc(〈T , C〉) > 0 and

• ∀ f∈C, Inc(〈T , C − {f}〉)=0 with f=(ϕ, α)
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It is clear that in Definition 4, removing any assertion ϕ from C restores the
consistency of 〈T , C〉. Recall that when the TBox is coherent, a conflict involves
exactly two assertions.

Example 4 (Example continued). Let us consider T and A⊕ from the above
example. The π-neg(T )={Av¬C, Bv¬C}. One can compute the following con-
flict sets: C1={(A(a), .6), (C(a), .4)}, C2={(C(b), .5), (B(b), .8)}, C3={(C(b), .5),
(A(b), .7)} and C4={(C(b), .5), (A(b), .2)}.

Let us assume that A1,...,An are assertional bases provided by n sources of
information to be linked to the same TBox T and they use the same scale to
represent uncertainty. Let denote by f=(ϕ,α) an assertion or a fact in Ai, we
define the notion of conflict vector as follows:

Definition 5. Let T be a TBox and A1,...,An be a set of ABox provided by
n distinct sources of information to be linked to T . Then ∀f∈Ai we define a
conflict vector associated with f=(ϕ, α)∈Ai:V(f)=〈ν1, ν2, ..., νn〉 such that

∀j = 1..n : Vj(f) =

{
1 if 〈T , {(ϕ, 1) ∪ Ai}〉 is consistent
Inc(〈T , {(ϕ, 1) ∪ Ai}〉) otherwise

Where Vi represents the ith component of the vector V.

Intuitively, for each assertion provided by an information source we built
upon a vector that represents to what extend this latter contradicts other ones
provided by other source. To this end, we add first the assertion with a highest
prescribed level in each source and then we compute the inconsistency degree of
this one. It is obvious that the conflict vector of a non conflicting assertion is
equal to V(f)=〈1, 1, ..., 1〉. However assertions that are involved in conflict will
have at least a νi strictly less than 1.

Example 5 (continued). One can obtain the following conflict vectors: V((A(a),.6))
=〈1, .6, 1〉,V((A(b), .7))=〈.5, 1, 1〉,V((A(b), .2))=〈.5, 1, 1〉,V((A(c), .5))=〈1, 1, 1〉, V
((B(b), .8))=〈.5, 1, 1〉, V((B(c), .4))=〈1, 1, 1〉,V((C(a), .4))=〈.4, 1, 1〉 and ν((C(b),
.5))=〈1, .2, .8〉

From now on, we give the way to aggregate assertional bases using conflict
vectors attached to each assertion. Let denote by Σ the set of conflict vectors,
we define the min-based assertional merging operators, denoted by Λ as follows:

Definition 6. Let T be a TBox and A1,A2, ...,An be a set of ABox provided by n
sources to be linked to T . Let Σ be the collection of conflict vectors associated to
each assertion on Ai. Then the min-based assertional merging operator, denoted
by Λ, is defined on Σ as follows:

∀V(f)∈Σ: Λ(f)=min{νi(f)}

Let us denote by ΣΛ, the vector resulting by min aggregation of conflict
vectors.

Example 6 (Example continued). ΣΛ contains the following elements: Λ((A(a), .6))
=.6, Λ((A(b), .7))=.5, Λ((A(b), .2))=.5, Λ((A(c), .5))=1, Λ((B(b), .8)) =.5, Λ((B(c),
.4))=1, Λ((C(a), .4)) =.4 and Λ((C(b), .5))=.2
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According to conflict vectors, one can associate to the set of assertions a new
pre-order by attaching to each of them a new weight (i.e. ∀(ϕ, α)∈Ai:(ϕ, α)=(ϕ,
Λ(f))). According to this new pre-order, we define the knowledge base resulting
from fusion operation as follows.

Definition 7. Let T be a TBox and A1, ...,An be a set of n ABox to be linked
to T . Let AΛ={(ϕ,Λ(f)):f = (ϕ, α)∈Ai andΛ(f) ∈ ΣΛ}. Let x=Inc(〈T ,AΛ〉).
Then the resulting knowledge base KΛ is such that:

KΛ=〈T , {(ϕ, α) : (ϕ, α) ∈ AΛ andα > x}〉

Example 7 (continued). One can obtain AΛ={(A(a), .6), (A(b), .5), (A(b), .5),
(A(c), 1), (B(b), .5), (B(c), 1), (C(a), .4), (C(b), .2)} where Inc(〈T ,AΛ〉 =.4.
Then KΛ = T ∪ {(A(a), .6), (A(b), .5), (A(b), .5), (A(c), 1), (B(b), .5), (B(c),
1)}.

According to Definition 7, it is clear that method based on conflict vectors is
more productive that the classical definition of the min-based merging operator
proposed in Definition 2. Note that this approach can easily propose others
aggregation modes such as product-based merging or sum-based merging. The
definition of this merging operator is based on a notion of conflict measure
between sources of information. However, one can observe that original weights
attached to assertions are lost. Regarding for instance assertion B(c), it is
provided by only one where its initial weight was .4. This means that B(c) is
not a totally reliable information. In the new knowledge base its weight is raised
to 1. This can be justified by the fact that such assertion is not involved in any
conflict. However when we need to an iteration process this approach may not be
very useful. To overcome such limitation while preserving the same productivity
of the fusion result, we propose the following definition.

Definition 8. Let T be a TBox and A1, ...,An be a set of n ABox to be linked
to T . Let AΛ={(ϕ,Λ(f)):(ϕ, α)∈Ai}. Let x=Inc(〈T ,AΛ〉). Then the resulting
knowledge base K′Λ is such that:

K′Λ=〈T , {f = (ϕ, α) ∈ Ai : i ∈ {1, ..., n}, (ϕ,Λ(f)) ∈ AΛ andΛ(f) > x}〉

4 Semantic counterpart

Let us consider A1,...,An a set of assertional bases (ABox) where each Ai rep-
resents data of a single source of information. We assume that we have a well-
formed and coherent terminological base (TBox) T where each Ai is consistent
with the T . Let π1,...,πn be the set of possibility distributions associated with
K1,...,Kn where each Ki=〈T ,Ai〉. Namely each DL-Liteπ knowledge base Ki is
associated with a possibility distribution πi which is its semantic counterpart.
In this section, we investigate fusion of weighted DL-Liteπ assertional bases at
semantic level. We show that such merging operation is the natural semantic
counterpart of the Λ merging operators (presented in Section 3) used to merge
DL-Liteπ ABox A1,...,An w.r.t a T . More formally, given (π1,...,πn) possibil-
ity distributions associated with (K1,...,Kn) DL-Liteπ knowledge bases, then
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for the proposed operator Λ applied to aggregate A1,...,An w.r.t T , we look
for a DL-Liteπ possibility distribution πΛ constructed from the aggregation of
(π1,...,πn) with the semantic counterpart of Λ that corresponds to the possibility
distribution πKΛ induced from KΛ. Namely πΛ=πKΛ .

4.1 Min-based assertional merging of possibility distribu-
tions

Let us assume that π1,...,πn share the same domain of interpretations (namely
∆1=...=∆n), and that all possibility distributions use the same scale to repre-
sents uncertainty. In [5], the semantic counterpart of the classical min-based
operator or idempotent conjunctive operator, denoted by ⊕, was defined as a
mapping from a vectors of possibility values (∀I∈Ω,ν(I)=〈π1(I), ..., πn(I)〉) to
an interval [0, 1] as follows: π⊕(I)=min{νi(I)}. Generally merging two nor-
malized possibility distributions gives an sub-normalized one. Normalizing π⊕
consists in maintaining only axioms having certainty degrees higher than the
inconsistency degree deduced from π⊕. In this section, we deal with assertional
bases merging at semantic level. We propose the natural semantic counterpart
of the min-based assertional merging operator, denote Λ, presented in Section
3.2 which is based on conflict resolution. The following definition introduces the
semantic definition of conflict vectors.

Definition 9. Let A1,...,An be a set of ABox and π1,...,πn be a the set of
possibility distributions induced from K1,...,Kn where each Ki=〈T ,Ai〉. Then
∀f∈Ai with f=(ϕ,α), we define semantically a conflict vector, denoted by V(f),
as follows:

V(f)=〈Ππ1
(ϕ),Ππ2

(ϕ), ...,Ππn
(ϕ)〉

where ∀i=1..n:Ππi(f) denotes the possibility measure of ϕ induced from the pos-
sibility distribution πi

Intuitively, a conflict vector associated to any ABox assertion represents to
what extent this latter is compatible with available knowledge provided by each
source.

Example 8 (continued). Assuming that ∆={a, b, c}, let us consider the follow-
ing possibility distributions π1, π2 and π3 to be merged. Note that we have only
considered interpretations model of T .

I .I π1 π2 π3

I1 A={a},B={a},C={b,c} 1 .2 .5
I2 A={b},B={b},C={a,c} .4 1 .5
I3 A={c},B={c},C={a,b} .4 .2 .8
I4 A={a,b},B={a,b},C={c} .5 .6 .5
I5 A={a,c},B={a,c},C={b} 1 .2 .8
I6 A={b,c},B={b,c},C={a} .4 1 1
I7 A={a,b,c},B={a,b,c},C={} .5 .6 1
I8 A={},B={},C={a,b,c} .4 .2 .5

Table 2: Possibility distributions induced from three knowledge basesOne can compute the following conflict vectors for each assertion:
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V(A(a))=〈max(1, .5, 1, 1),max(.2, .6, .2, .6),max(.5, .6, .8, 1)〉=〈1, .6, 1〉,
V(A(b))=〈max(.4, .5, .5, 5),max(1, .6, .1, .6),max(.5, .5, 1, 1)〉=〈.5, 1, 1〉,
V(A(c))=〈max(.4, 1, .4, .5),max(.2, .2, 1, .6),max(.8, .8, 1, 1)〉=〈1, 1, 1〉,
V(B(b))=〈.5, 1, 1〉, V(B(c))=〈1, 1, 1〉, V(C(a))=〈.4, 1, 1〉 and V(C(b))=
〈1, .2, .8〉 which are equal the ones computed syntactically in Example 5.

Let us denote by Σ the collection of conflict vectors associated to each as-
sertion of Ai. The next definition introduces min-based assertional merging
operator, denoted Λ, on the conflict vectors of Σ.

Definition 10. Let A1,...,An be a set of ABox and π1,...,πn be a the set of
possibility distributions induced from K1,...,Kn where each Ki=〈T ,Ai〉. Let Σ
the collection of conflict vectors associated to each assertion on Ai computed
using Definition 9. Then the min-based assertional merging operator, denoted
by Λ, is defined on Σ as follows: ∀V(f)∈Σ:V(f)=〈Ππ1(ϕ),Ππ2(ϕ), ...,Ππn(ϕ)〉,

Λ(f)= min{νi(f) ∈ V(f)}

Let us denote by ΣΛ, the vector resulting bymin-based aggregation of conflict
vectors.

Example 9 (Example continued). One can compute the set ΣΛ as follow:
Λ((A(a), .6))=.6, Λ((A(b), .7))=.5, Λ((A(b), .2))=.5, Λ((A(c), .5))=1, Λ((B(b), .8))
=.5, Λ((B(c), .4))=1, Λ((C(a), .4)) =.4 and Λ((C(b), .5))=.2

From Definition 10, one can associate to each assertion a new weight that
represents its compatibility with others assertions provided other sources.

Definition 11. Let A1,...,An be a set of ABox and π1,...,πn be a the set of
possibility distributions induced from K1,...,Kn where each Ki=〈T ,Ai〉. Then
the possibility distribution πΛ as follows:

∀I ∈ Ω : πΛ(I) =

{
1 if ∀ (ϕ, α) ∈ Ai, I � ϕ

1−max{Λ((ϕ, α)) : (ϕ, α) ∈ Ai, and I 2 ϕ} otherwise
where Λ(ϕi) is the compatibility measure of ϕi computed using definition 10

Example 10. From Example 3, we have (A(c),.1), (B(c),1), (A(a),.6), (A(b),.5),
(B(b),.5), (C(a),.4), (C(a),.2). Then:

I I1 I2 I3 I4 I5 I6 I7 I8

πΛ 0 0 .4 0 .5 .4 .6 0

Table 3: Possibility distributions resulting from assertional min-based merging
of possibility distributions

One can check that merging normalized possibility distributions may lead
to sub-normalized possibility distribution. This is the case with our example.
Indeed, we focus on the normalization problem when the use of min-based as-
sertional operators min provides a subnormal possibility distribution.

Definition 12. Let us consider: h(πΛ)=max
I∈Ω
{πΛ(I)}. Then for every I∈Ω and

h(πΛ)>0, πNΛ(I) =

{
1 if πΛ(I) = h(πΛ)

πΛ(I) otherwise

12



Example 11 (continued). From previous Example, we have:I I1 I2 I3 I4 I5 I6 I7 I8

πΛ 0 0 .4 0 .5 .4 .6 0
πΛ 0 0 .4 0 .5 .4 1 0

Table 4: Normalized possibility distributions resulting from assertional min-
based merging

The following proposition states the equivalence between the semantic and
syntactic approaches.

Proposition 1. Let A1,...,An be a set of ABox and π1,...,πn be a the set of
possibility distributions induced from K1,...,Kn where each Ki=〈T ,Ai〉.Then the
possibility distribution

πNΛ(I) =

{
1 if πΛ(I) = h(πΛ)

πΛ(I) otherwise

is associated with

KΛ=〈T , {(ϕ,Λ(f)) : (ϕ,Λ(f)) ∈ AΛ andΛ(f) > x}〉

4.2 Logical properties

Let us use E={K1, ...,Kn} to denote a multi-set, called belief profile, that rep-
resents the knowledge bases to be merged (where each Ki is associated with a
possibility distribution πi). Let us use 4 to denote a merging operator. This
merging operator can be parametrized by an integrity constraint, being a kon-
wledge base K, and 4K(E) denotes the result of the merging operator under
this constraint K. A logical characterization of integrity constraint merging op-
erators has been proposed in [22] through a set of rational postulates extended
from the ones proposed for belief revision [20]. The following postulates rephrase
the ones proposed in [22] within DL-Lite framework.

(Mπ
0) 4K(E) |= K

(Mπ
1) if K is consistent, then 4K(E) is consistent

(Mπ
2) if K ∪

⋃
Ki∈E Ki is consistent, then 4K(E)=K ∪

⋃
Ki∈E Ki

(Mπ
3) if E1 ≈ E2 and K1 ≡ K2, then 4K1

(E1) ≡ 4K2
(E2).

(Mπ
4) if K1 |= K and K2 |= K, then 4K(K1 ∪ K2) is consistent implies that
4K(K1 ∪ K2) ∪ K2 is consistent

(Mπ
5) 4K(E1) ∪4K(E2) |= 4K(E1 ] E2)

(Mπ
6) if4K(E1)∪4K(E2) is consistent, then4K(E1]E2) |= 4K(E1)∪4K(E2)

(Mπ
7) 4K(E) ∪ K′ |= 4K∪K′(E)

(Mπ
8) if 4K(E) ∪ K′ is consistent, then 4K∪K′(E) |= 4K(E) ∪ K′

13



(Mπ
maj) ∃n 4K(E1 ] En2 ) |= 4K(E2)

(Mπ
I ) ∀n 4K(E1 ] En2 ) ≡ 4K(E1 ] E2)

With:

1. K1 |= K2 iff arg maxI πK1
(I) ⊆ arg maxI πK2

(I)

2. K1 ≡ K2 iff K1 |= K2 and K2 |= K1

3. E1 ≈ E2 if and only if there exists a bijection g from E1 to E2 such that
∀K ∈ E1 : πK=πg(K)

4. ] is the union of multisets [21]

5. En = E ] ... ] E︸ ︷︷ ︸
n times

Note that in the special case where we only consider only one TBox T1 for
E, these postulates are equivalent with the ones proposed in [27], by considering
the revision of T1 by the shared TBox T . Hence, our postulates extend (with
very few adaptations) the notion of Revision of [27].

For the merging process considered in the present paper, the integrity con-
straint is K=〈T , ∅〉 where T is the set of TBox axioms of each Ki ∈ E and
Ki = 〈T ,Ai〉.
Proposition 2. Our min-based assertional merging merging satisfies (Mπ

0),
(Mπ

1), (Mπ
2), (Mπ

3), (Mπ
5), (Mπ

6), (Mπ
7), (Mπ

8), (Mπ
I ) and falsifies (Mπ

4),
(Mπ

maj).

5 Conclusion

We propose in this paper a new operator for merging multiple sources ABoxes
sharing a same terminology in the context of DL-Liteπ. We propose a syntactic
version of this operator and its semantic counterpart. This operator turns out
to be more productive than the operator previously proposed in [5], without
increasing the complexity of the merging process. In particular, it picks any
pieces of information that is not in contradiction with other bases: it is not
affected by the drowning effect. We finally provide an analysis in the light of a
new set of postulates dedicated to uncertain DL-Lite merging.

This paper opens several perspectives. For instance, we focus on a min oper-
ator for aggregating conflict vectors, in order to preserve possibilistic semantics.
Nevertheless, other aggregation operators can be considered (e.g. the prod-
uct operator) or direct comparisons from vectors (e.g. G-max based operator).
From a postulate point of view, other postulates dedicated to DL knowledge
bases could be studied and adapted (e.g. arbitration [23]).
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